domingo, 4 de septiembre de 2011

EL CALCULO

 El cálculo nación en la segunda mitad del siglo XVII, un científico ingles su nombre es Isaac Newton pero no se puede distribuir solamente a Newton lo comparte en justicia con un molidito diplomático de Hannover Alemania se llamaba Barón Virgen Von Lainich. Lainich invento la calculadora mecánica que era portátil y podía sacar raíces cuadradas.
El cálculo diferencial es una herramienta matemática  para analizar el cambio en la cosas, las asas de esa herramienta son algunas reglas sencillas para calcular derivadas. En general el término cálculo (del latín calculus = piedra) hace referencia, indistintamente, a la acción o el resultado correspondiente a la acción de calcular. Calcular, por su parte, consiste en realizar las operaciones necesarias para prever el resultado de una acción previamente concebida, o conocer las consecuencias que se pueden derivar de unos datos previamente conocidos.
No obstante, el uso más común del término cálculo es el lógico-matemático. Desde esta perspectiva, el cálculo consiste en un procedimiento mecánico, o algoritmo, mediante el cual podemos conocer las consecuencias que se derivan de unos datos previamente conocidos. 
En el siglo XVII el cálculo conoció un enorme desarrollo siendo los autores más destacados Descartes, Pascal y, finalmente, Leibniz y Newton con el cálculo infinitesimal que en muchas ocasiones ha recibido simplemente, por absorción, el nombre de cálculo.
En la actualidad, el cálculo en su sentido más general, en tanto que cálculo lógico interpretado matemáticamente como sistema binario, y físicamente hecho material mediante la lógica de circuitos eléctrónicos, ha adquirido una dimensión y desarrollo impresionante por la potencia de cálculo conseguida por los ordenadores, propiamente máquinas computadoras. La capacidad y velocidad de cálculo de estas máquinas hace lo que humanamente sería imposible: millones de operaciones por segundo.
El cálculo así utilizado se convierte en un instrumento fundamental de la investigación científica por las posibilidades que ofrece para la modelización de las teorías científicas, adquiriendo especial relevancia en ello el cálculo numérico. El cálculo infinitesimal, llamado por brevedad "cálculo", tiene su origen en la antigua geometría griega. Demócrito calculó el volumen de pirámides y conos considerándolos formados por un número infinito de secciones de grosor infinitesimal (infinitamente pequeño). Eudoxo y Arquímedes utilizaron el "método de agotamiento" o exhaución para encontrar el área de un círculo con la exactitud finita requerida mediante el uso de polígonos regulares inscritos de cada vez mayor número de lados. En el periodo tardío de Grecia, el neoplatónico Pappus de Alejandría hizo contribuciones sobresalientes en este ámbito. Sin embargo, las dificultades para trabajar con números irracionales y las paradojas de Zenón de Elea impidieron formular una teoría sistemática del cálculo en el periodo antiguo. En el siglo XVII, Cavalieri y Torricelli ampliaron el uso de los infinitesimales, Descartes y Fermat utilizaron el álgebra para encontrar el área y las tangentes (integración y Derivación en términos modernos). Fermat y Barrow tenían la certeza de que ambos cálculos estaban relacionados, aunque fueron Newton (hacia 1660), en Inglaterra y Leibniz en Alemania (hacia 1670) quienes demostraron que los problemas del área y la tangente son inversos, lo que se conoce como teorema fundamental del cálculo. El descubrimiento de Newton, a partir de su teoría de la gravitación universal, fue anterior al de Leibniz, pero el retraso en su publicación aún provoca controversias sobre quién de los dos fue el primero. Newton utilizó el cálculo en mecánica en el marco de su tratado "Principios matemáticos de filosofía natural", obra científica por excelencia, llamando a su método de "fluxiones". Leibniz utilizó el cálculo en el problema de la tangente a una curva en un punto, como límite de aproximaciones sucesivas, dando un carácter más filosófico a su discurso. Sin embargo, terminó
por adoptarse la notación de Leibniz por su versatilidad.


En este video mostramos los descubridores del calculo y el contexto que los rodeaba.



En este video podemos observar la relacion entre el calculo y nuestra vida cotidiana

Conclusion:
Hemos llegado a la conclusion que el calculo tiene su propia historia como todas las artes, modalidades y los grandes descubrimientos que han surgido a lo largo del tiempo. El calculo es muy utill en nuestra vida cotidiana ya que lo podemos utilizar para describir y calcular el resultado de lo que sucede en nuestro entorno. Un ejemplo seria calcular el perimetro de algunas albercas circulares o terrenos con distintas formas.

Integrantes de Equipo:

- Ana Laura Giles Lopez

- Abel Uribe Diaz

- Juan Bosco Delgadillo Lara